4B Definitions

1.

Symbol	Sign can be + or -	Always positive
t	time	
delta t or $\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}\right)$	change in time	elapsed time
X	position	
delta x or $\left(\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right)$	change in position	distance
$\begin{array}{cc} \hline \text { delta } x \text { or } & \left(x_{f}-x_{i}\right) \\ \text { delta } t & \left(t_{f}-t_{i}\right) \\ \hline \end{array}$	velocity	speed
$\frac{\text { delta } v}{\text { delta } t} \text { or } \frac{\left(v_{\underline{f}}-v_{i}\right)}{\left(t_{f}-t_{i}\right)}$	acceleration	magnitude of acceleration

2. Assume that the line below shows the position of an object in units of 1 m . Let the position of the object be called x. Determine the following:
a. Position of the object at A.

$$
x=-11 m
$$

b. Position of the object at B.

$$
\mathrm{x}=-10 \mathrm{~m}
$$

c. Position of the object at C.

$$
x=-1 m
$$

d. Position of the object at D.

$$
\mathrm{x}=0 \mathrm{~m}
$$

e. Position of the object at E.

$$
\mathrm{x}=1 \mathrm{~m}
$$

f. Position of the object at F .

$$
\mathrm{x}=10 \mathrm{~m}
$$

g. Position of the object at G.

$$
\mathrm{x}=11 \mathrm{~m}
$$

h. Distance between A and B. The change in position for object that moves from A to B. $D=1 m ; x_{f}-x_{i}=-10 m-(-11 m)=1 m$
i. Distance between C and E . The change in position for object that moves from C to E . $D=2 m ; x_{f}-x_{i}=1 m-(-1 m)=2 m$
j. Distance between B and F. The change in position for object that moves from B to F. $D=20 m ; x_{f}-x_{i}=10 \mathrm{~m}-(-10 \mathrm{~m})=20 \mathrm{~m}$
k. Distance between G and B. The change in position for object that moves from G to B. $D=21 m ; x_{f}-x_{i}=-10 m-(11 m)=-21 m$

1. Distance between B and A. The change in position for object that moves from B to A. $D=1 m ; x_{f}-x_{i}=-11 m-(-10 m)=-1 m$
m . Distance between A and D. The change in position for object that moves from D to A . $D=11 m ; x_{f}-x_{i}=-11 m-(0 m)=-11 m$
n . Distance between G and D. The change in position for object that moves from G to D. $D=11 m ; x_{f}-x_{i}=0 m-(11 m)=-11 m$

2. Assume that the line in problem 2 shows the velocity of an object in units of $1 \mathrm{~m} / \mathrm{s}$. Let the velocity of the object be called v. Determine the following:
a. Velocity and speed of the object at A. $\mathrm{v}=-11 \mathrm{~m} / \mathrm{s}$; speed $=11 \mathrm{~m} / \mathrm{s}$
b. Velocity and speed of the object at B. $\mathrm{v}=-10 \mathrm{~m} / \mathrm{s}$; speed $=10 \mathrm{~m} / \mathrm{s}$
c. Velocity and speed of the object at C. $\mathrm{v}=-1 \mathrm{~m} / \mathrm{s}$; speed $=1 \mathrm{~m} / \mathrm{s}$
d. Velocity and speed of the object at D. $\mathrm{v}=0 \mathrm{~m} / \mathrm{s}$; speed $=0 \mathrm{~m} / \mathrm{s}$
e. Velocity and speed of the object at E . $\mathrm{v}=1 \mathrm{~m} / \mathrm{s}$; speed $=1 \mathrm{~m} / \mathrm{s}$
f. Velocity and speed of the object at F. $\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$; speed $=10 \mathrm{~m} / \mathrm{s}$
g. Velocity and speed of the object at G.
$\mathrm{v}=11 \mathrm{~m} / \mathrm{s}$; speed $=11 \mathrm{~m} / \mathrm{s}$
h. Change in speed for an object that moves from A and B. The change in velocity for object that moves from A to B.
change in speed $=1 \mathrm{~m} / \mathrm{s}$; change in velocity $=\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}=1 \mathrm{~m} / \mathrm{s}$
i. Change in speed for an object that moves from C and E . The change in velocity for object that moves from C to E .
change in speed $=2 \mathrm{~m} / \mathrm{s}$; change in velocity $=\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}=2 \mathrm{~m} / \mathrm{s}$
j. Change in speed for an object that moves from B and F. The change in velocity for object that moves from B to F. change in speed $=20 \mathrm{~m} / \mathrm{s}$; change in velocity $=\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s}$
k. Change in speed for an object that moves from G and B. The change in velocity for object that moves from G to B.
change in speed $=21 \mathrm{~m} / \mathrm{s}$; change in velocity $=v_{f}-v_{i}=-21 \mathrm{~m} / \mathrm{s}$
3. Change in speed for an object that moves from B and A. The change in velocity for object that moves from B to A .
change in speed $=1 \mathrm{~m} / \mathrm{s}$; change in velocity $=v_{f}-v_{i}=-1 \mathrm{~m} / \mathrm{s}$
m . Change in speed for an object that moves from A and D . The change in velocity for object that moves from D to A.
change in speed $=11 \mathrm{~m} / \mathrm{s}$; change in velocity $=v_{f}-v_{i}=-11 \mathrm{~m} / \mathrm{s}$
n . Change in speed for an object that moves from G and D. The change in velocity for object that moves from G to D.
change in speed $=11 \mathrm{~m} / \mathrm{s}$; change in velocity $=\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}=-11 \mathrm{~m} / \mathrm{s}$

4. Assume that the line in problem 2 shows the time of an object in units of 1 s . Let the time of the object be called t . Determine the following:
a. Time of the object at A.
$\mathrm{t}=-11 \mathrm{~s}$
b. Time of the object at B.
$\mathrm{t}=-10 \mathrm{~s}$
c. Time of the object at C .
$\mathrm{t}=-1 \mathrm{~s}$
d. Time of the object at D .
$\mathrm{t}=0 \mathrm{~s}$
e. Time of the object at E .
$\mathrm{t}=1 \mathrm{~s}$
f. Time of the object at F .
$\mathrm{t}=10 \mathrm{~s}$
g. Time of the object at G. $\mathrm{t}=11 \mathrm{~s}$
h. Elapsed time between A and B. The change in time for object that moves from A to B. elapsed time $=1 \mathrm{~s}$; change in time $=t_{f}-t_{i}=1 \mathrm{~s}$
i. Elapsed time between C and E. The change in time for object that moves from C to E . elapsed time $=2 \mathrm{~s}$; change in time $=\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}=2 \mathrm{~s}$
j. Elapsed time between B and F. The change in time for object that moves from B to F. elapsed time $=20 \mathrm{~s}$; change in time $=\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}=20 \mathrm{~s}$
k. Elapsed time between G and B. The change in time for object that moves from G to B, elapsed time $=21 \mathrm{~s}$; change in time $=t_{f}-t_{i}=-21 \mathrm{~s}$
5. Elapsed time between B and A. The change in time for object that moves from B to A. elapsed time $=1 \mathrm{~s}$; change in time $=t_{f}-t_{i}=-1 \mathrm{~s}$
m . Elapsed time between A and D. The change in time for object that moves from D to A . elapsed time $=11$; change in time $=t_{f}-t_{i}=-11 \mathrm{~s}$
n. Elapsed time between G and D. The change in time for object that moves from G to D. elapsed time $=11 \mathrm{~s}$; change in time $=\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}=-111 \mathrm{~s}$

6. Assume that the line in problem 2 shows the acceleration of an object in units of $1 \mathrm{~m} / \mathrm{s}^{2}$.

Let the acceleration of the object be called a. Determine the following:
a. Acceleration and magnitude of the acceleration of the object at A. $\mathrm{a}=-11 \mathrm{~m} / \mathrm{s}^{2}$; magnitude of acceleration $=11 \mathrm{~m} / \mathrm{s}^{2}$
b. Acceleration and magnitude of the acceleration of the object at B . $a=-10 \mathrm{~m} / \mathrm{s}^{2}$; magnitude of acceleration $=10 \mathrm{~m} / \mathrm{s}^{2}$
c. Acceleration and magnitude of the acceleration of the object at C. $a=-1 \mathrm{~m} / \mathrm{s}^{2}$; magnitude of acceleration $=1 \mathrm{~m} / \mathrm{s}^{2}$
d. Acceleration and magnitude of the acceleration of the object at D .
$a=0 \mathrm{~m} / \mathrm{s}^{2}$; magnitude of acceleration $=0 \mathrm{~m} / \mathrm{s}^{2}$
e. Acceleration and magnitude of the acceleration of the object at E .
$a=1 \mathrm{~m} / \mathrm{s}^{2}$; magnitude of acceleration $=1 \mathrm{~m} / \mathrm{s}^{2}$
f. Acceleration and magnitude of the acceleration of the object at F .
$a=10 \mathrm{~m} / \mathrm{s}^{2}$; magnitude of acceleration $=10 \mathrm{~m} / \mathrm{s}^{2}$
g . Acceleration and magnitude of the acceleration of the object at G.
$a=11 \mathrm{~m} / \mathrm{s}^{2}$; magnitude of acceleration $=11 \mathrm{~m} / \mathrm{s}^{2}$
h. Change in magnitude of the acceleration for an object that moves from A and B. The change in acceleration for object that moves from A to B. change in magnitude of acceleration $=1 \mathrm{~m} / \mathrm{s}^{2}$; change in $\mathrm{a}=\mathrm{a}_{\mathrm{f}}-\mathrm{a}_{\mathrm{i}}=1 \mathrm{~m} / \mathrm{s}^{2}$
i. Change in magnitude of the acceleration for an object that moves from C and E . The change in acceleration for object that moves from C to E .
change in magnitude of acceleration $=2 \mathrm{~m} / \mathrm{s}^{2}$; change in $a=a_{f}-a_{i}=2 \mathrm{~m} / \mathrm{s}^{2}$
j. Change in magnitude of the acceleration for an object that moves from B and F. The change in acceleration for object that moves from B to F.
change in magnitude of acceleration $=20 \mathrm{~m} / \mathrm{s}^{2}$; change in $\mathrm{a}=\mathrm{a}_{\mathrm{f}}-\mathrm{a}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s}^{2}$
k . Change in magnitude of the acceleration for an object that moves from G and B. The change in acceleration for object that moves from G to B.
change in magnitude of acceleration $=21 \mathrm{~m} / \mathrm{s}^{2}$; change in $\mathrm{a}=\mathrm{a}_{\mathrm{f}}-\mathrm{a}_{\mathrm{i}}=-21 \mathrm{~m} / \mathrm{s}^{2}$

1. Change in magnitude of the acceleration for an object that moves from B and A. The change in acceleration for object that moves from B to A.
change in magnitude of acceleration $=1 \mathrm{~m} / \mathrm{s}^{2}$; change in $a=a_{f}-a_{i}=-1 \mathrm{~m} / \mathrm{s}^{2}$
m . Change in magnitude of the acceleration for an object that moves from A and D. The change in acceleration for object that moves from D to A.
change in magnitude of acceleration $=11 \mathrm{~m} / \mathrm{s}^{2}$; change in $\mathrm{a}=\mathrm{a}_{\mathrm{f}}-\mathrm{a}_{\mathrm{i}}=-11 \mathrm{~m} / \mathrm{s}^{2}$ n. Change in magnitude of the acceleration for an object that moves from G and D. The change in acceleration for object that moves from G to D.
change in magnitude of acceleration $=11 \mathrm{~m} / \mathrm{s}^{2}$; change in $\mathrm{a}=\mathrm{a}_{\mathrm{f}}-\mathrm{a}_{\mathrm{i}}=-11 \mathrm{~m} / \mathrm{s}^{2}$

